130 research outputs found

    Effective Actions for the SU(2) Confinement-Deconfinement Phase Transition

    Full text link
    We compare different Polyakov loop actions yielding effective descriptions of finite-temperature SU(2) Yang-Mills theory on the lattice. The actions are motivated by a simultaneous strong-coupling and character expansion obeying center symmetry and include both Ising and Ginzburg-Landau type models. To keep things simple we limit ourselves to nearest-neighbor interactions. Some truncations involving the most relevant characters are studied within a novel mean-field approximation. Using inverse Monte-Carlo techniques based on exact geometrical Schwinger-Dyson equations we determine the effective couplings of the Polyakov loop actions. Monte-Carlo simulations of these actions reveal that the mean-field analysis is a fairly good guide to the physics involved. Our Polyakov loop actions reproduce standard Yang-Mills observables well up to limitations due to the nearest-neighbor approximation.Comment: 14 pages, 10 figures, v2: typos correcte

    Neurocognitive evidence for mental imagery-driven hypoalgesic and hyperalgesic pain regulation

    Get PDF
    Mental imagery has the potential to influence perception by directly altering sensory, cognitive, and affective brain activity associated with imagined content. While it is well established that mental imagery can both exacerbate and alleviate acute and chronic pain, it is currently unknown how imagery mechanisms regulate pain perception. For example, studies to date have been unable to determine whether imagery effects depend upon a general redirection of attention away from pain or focused attentional mechanisms. To address these issues, we recorded subjective, behavioral and ERP responses using 64-channel EEG while healthy human participants applied a mental imagery strategy to decrease or increase pain sensations. When imagining a glove covering the forearm, participants reported decreased perceived intensity and unpleasantness, classified fewer high-intensity stimuli as painful, and showed a more conservative response bias. In contrast, when imagining a lesion on the forearm, participants reported increased pain intensity and unpleasantness, classified more lowintensity stimuli as painful, and displayed a more liberal response bias. Using a mass-univariate approach,we further showed differential modulation of the N2 potentials across conditions, with inhibition and facilitation respectively increasing and decreasing N2 amplitudes between 122 and 180 ms. Within this time window, source localization associated inhibiting vs. facilitating pain with neural activity in cortical regions involved in cognitive inhibitory control and in the retrieval of semantic information (i.e., right inferior frontal and temporal regions). In contrast, the main sources of neural activity associatedwith facilitating vs. inhibiting pain were identified in cortical regions typically implicated in salience processing and emotion regulation (i.e., left insular, inferior-middle frontal, supplementary motor and precentral regions). Overall, these findings suggest that the content of a mental image directly alters pain-related decision and evaluative processing to flexibly produce hypoalgesic and hyperalgesic outcomes

    Kaliningrad

    Get PDF
    Andreas Roepstorff: Kaliningra

    Modelling fore- and hindlimb peak vertical force differences in trotting horses using upper body kinematic asymmetry variables

    Full text link
    Differences in peak vertical ground reaction forces (dFzpeak) between contralateral forelimbs and hindlimbs are considered the gold standard for quantifying weight-bearing lameness. However, measuring kinematics for the same purpose is more common and practical. Vertical movement asymmetries (VMA) of the horse's upper body have previously been correlated to fore- and hindlimb lameness. But the combined response of head, withers and pelvis VMA to fore- and hindlimb dFzpeak has not yet been thoroughly investigated. Deriving the kinetic responses from kinematics would help the interpretation and understanding of quantified weight-bearing lameness. In this retrospective study, 103 horses with a wide range of fore- and hindlimb dFzpeak had been trotted on a force-measuring treadmill synchronized with an optical motion capture system. VMA of the head, withers and pelvis as well as dFzpeak were extracted. Multiple linear mixed models and linear regressions of kinematic variables were used to model the dFzpeak. It was hypothesised that all included VMA would have a significant influence on the dFzpeak outcome variables. The results showed a complex relationship between VMA and dFzpeak where both amplitude and timing of the VMA were of importance. On average, the contribution percentage of VMA to fore/hind dFzpeak were 66/34% for head, 76/24% for withers and 33/67% for pelvis. The linear regressions for the fore/hindlimb models achieved mean measurement root mean squared errors of 0.83%/0.82% dFzpeak. These results might help determine the clinical relevance of upper body VMA and distinguish between primary fore, hind, ipsilateral and diagonal weight-bearing lameness

    In for a penny, in for a pound: methylphenidate reduces the inhibitory effect of high stakes on persistent risky choice

    Get PDF
    Methylphenidate (MPH) is a stimulant that increases extracellular levels of dopamine and noradrenaline. It can diminish risky decision-making tendencies in certain clinical populations. MPH is also used, without license, by healthy adults, but the impact on their decision-making is not well established. Previous work has found that dopamine receptor activity of healthy adults can modulate the influence of stake magnitude on decisions to persistently gamble after incurring a loss. In this study, we tested for modulation of this effect by MPH in 40 healthy human adults. In a double-blind experiment, 20 subjects received 20 mg of MPH, while 20 matched controls received a placebo. All were provided with 30 rounds of opportunities to accept an incurred loss from their assets or opt for a "double-or-nothing" gamble that would either avoid or double it. Rounds began with a variable loss that would double with every failed gamble until it was accepted, recovered, or reached a specified maximum. Probability of recovery on any gamble was low and ambiguous. Subjects receiving placebo gambled less as the magnitude of the stake was raised and as the magnitude of accumulated loss escalated over the course of the task. In contrast, subjects treated with MPH gambled at a consistent rate, well above chance, across all stakes and trials. Trait reward responsiveness also reduced the impact of high stakes. The findings suggest that elevated catecholamine activity by MPH can disrupt inhibitory influences on persistent risky choice in healthy adults

    Tiltrædelsesforelæsninger: Tre professorer

    Get PDF
    Nils Bubandt. Demokrato som selvfølge: Hvad kan antropologi sige om globaliseringen af folkestyret? Andreas Roepstorff. Eksperimentel AntropologiRane Willerslev. Det guddommelige blik: En analyse af „Den Dansende Troldmand“

    Together, Slowly but Surely: The Role of Social Interaction and Feedback on the Build-Up of Benefit in Collective Decision-Making

    Get PDF
    That objective reference is necessary for formation of reliable beliefs about the external world is almost axiomatic. However, Condorcet (1785) suggested that purely subjective information—if shared and combined via social interaction—is enough for accurate understanding of the external world. We asked if social interaction and objective reference contribute differently to the formation and build-up of collective perceptual beliefs. In three experiments, dyads made individual and collective perceptual decisions in a two-interval, forced-choice, visual search task. In Experiment 1, participants negotiated their collective decisions with each other verbally and received feedback about accuracy at the end of each trial. In Experiment 2, feedback was not given. In Experiment 3, communication was not allowed but feedback was provided. Social interaction (Experiments 1 and 2 vs. 3) resulted in a significant collective benefit in perceptual decisions. When feedback was not available a collective benefit was not initially obtained but emerged through practice to the extent that in the second half of the experiments, collective benefits obtained with (Experiment 1) and without (Experiment 2) feedback were robust and statistically indistinguishable. Taken together, this work demonstrates that social interaction was necessary for build-up of reliable collaborative benefit, whereas objective reference only accelerated the process but—given enough opportunity for practice—was not necessary for building up successful cooperation

    Frontal alpha oscillations distinguish leaders from followers: Multivariate decoding of mutually interacting brains

    Get PDF
    Successful social interactions rely upon the abilities of two or more people to mutually exchange information in real-time, while simultaneously adapting to one another. The neural basis of social cognition has mostly been investigated in isolated individuals, and more recently using two-person paradigms to quantify the neuronal dynamics underlying social interaction. While several studies have shown the relevance of understanding complementary and mutually adaptive processes, the neural mechanisms underlying such coordinative behavioral patterns during joint action remain largely unknown. Here, we employed a synchronized finger-tapping task while measuring dual-EEG from pairs of human participants who either mutually adjusted to each other in an interactive task or followed a computer metronome. Neurophysiologically, the interactive condition was characterized by a stronger suppression of alpha and low-beta oscillations over motor and frontal areas in contrast to the non-interactive computer condition. A multivariate analysis of two-brain activity to classify interactive versus non-interactive trials revealed asymmetric patterns of the frontal alpha-suppression in each pair, during both task anticipation and execution, such that only one member showed the frontal component. Analysis of the behavioral data showed that this distinction coincided with the leader–follower relationship in 8/9 pairs, with the leaders characterized by the stronger frontal alpha-suppression. This suggests that leaders invest more resources in prospective planning and control. Hence our results show that the spontaneous emergence of leader–follower relationships in dyadic interactions can be predicted from EEG recordings of brain activity prior to and during interaction. Furthermore, this emphasizes the importance of investigating complementarity in joint action
    • …
    corecore